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1 Introduction

If the man-in-the-street were asked ‘Why are there two slots in the top of a violin?’ he might answer
‘To let the sound out’. Is he correct? If so, is this all there is to it? Although the shape, size and
position of the two f-holes have been established through centuries of practice, we can still ask how
important they are to the quality of sound produced, and whether other holes in other places would
work just as well.

This is the fifth article in a series describing my personal investigations into the acoustics
of the violin and viola. Previous articles have used experiment and finite element analysis with the
LISA and Strand7 programs to investigate the normal modes of vibration of the wooden components
of these stringed instruments, starting with single free flat plates. In these studies the wood was
considered to be in vacuum as far as its vibrations are concerned. This present article considers the
air inside the belly of the instrument, its vibration in and out of the two f-holes, and its interaction
with the enclosing wooden box.

Pioneering studies of the physics of the violin by Carleen Hutchins, Frederick Saunders and
several others, reviewed briefly in §4, have described a series of air resonances in a violin, viola or
‘cello termed A0, A1, A2, etc. On a violin A0, the lowest, is at about 270 Hz and Al at about 470
Hz. All except A0 correspond to standing waves inside the cavity, similar to those in an organ pipe.
By contrast, at A0 the instrument acts much like a classic Helmholtz resonator in which a plug of air
vibrates in and out of each f-hole, with the air inside acting as a spring, expanding and contracting
in volume. A Helmholtz resonance is also produced by blowing across the neck of a wine bottle. The
pitch of the note depends on the volume of the air reservoir and (unlike an organ pipe) not on its
length per se. Of course, the air in a violin is only set in motion through the vibration of the wooden
box structure, so there must be coupling between the air and the thin wooden walls. A0 is described
as crucial for strengthening the loudness of notes on the lowest two strings (G and D on violin, C
and G on viola) since the lowest wood resonance is typically a musical fifth higher.

To orient us and show the scope of the topic, I start in §2 with some experimental measure-
ments on a simplified model of a violin — a wooden box with only one flexible plate and only one hole
into the cavity, driven electro-mechanically by a sinusoidal force from a signal generator. Listening
with an external microphone, we obtain amplitude-frequency curves which map the sound radiated
as the frequency is swept. These curves have a rich structure and together they pose a challenge to
analytical theory and numerical modelling, to explain their many peaks and troughs. Some may will



be due primarily to the normal modes of the wooden plates, some to the air cavity, and some may
depend in frequency and amplitude on coupling between wood and air.

From these amplitude-frequency spectra we pick out the Helmholtz resonance, which is the
central topic of this article. I hope to quantify the wider complexities in future articles. In §3 I
describe my own experiments to observe and measure the Helmholtz and other air resonances in
violins and violas. There is a large literature on acoustic resonators dating back to Helmholtz’s
original papers of the 1880s and Lord Rayleigh’s theoretical analysis in volume II of his monumental
‘Theory of Sound’. The literature broadly falls into two categories:

1. studies of the importance of AQ and other resonances on the musical tone and loudness of
violins,

2. studies of how the frequency of any Helmholtz resonator, not necessarily a violin, is determined
by the volume and shape of the cavity and the area, height and shape of the neck opening.

The brief review in §4 deals with category 1, mainly the work of Carleen Hutchins and Frederick
Saunders on the tone of violins. Category 2 studies are considered in the later sections of this paper,
from §5 onwards. In §5 I derive the classic Helmholtz frequency formula for the case where the
cavity has rigid walls. Most traditional calculations assume a simple shape of opening and neck of
the Helmholtz resonator. I have examined a range of shapes with the LISA finite element program
which can solve the relevant Helmholtz acoustic wave equation assuming rigid walls. These start in
§6 with the acoustically simple case of a wine bottle. §7 describes a sequence of experimental and
corresponding FEA studies of a rectangular plywood box with a volume about that of a violin into
which apertures of various sizes and shapes are cut. Finally §8 discusses the coupling between the
air cavity and flexible elastic walls, presenting experimental results to show that flexible walls can
lower AQ to at least 65% of its value when the walls are rigid.

2 ‘Letting the sound out’

I start by describing the last set of experiments I carried out for this article because it sets the scene
for all the subsequent discussion. Acoustic measurements were made on a wooden box which I will
call Box C; it will be referred to in later sections, where further details are given. It is the cuboidal
box in Figure 1 with roughly the dimensions of a violin, being internally 340 mm by 160 mm by 45
mm. [t was initially made of 2-91 mm thick 3-plywood but then clad on all sides except the back
with thick MDF! board to make those faces almost rigid. A window had been cut in the MDF of the
top plate to leave a small area of the 3-ply exposed, and into this had been cut a slot about 53 mm
long and 14 mm wide, through into the cavity. Thus the MDF is clear of the aperture by about 15
mm all round, and the thickness of the plate at and immediately around the aperture is only 2-91
mm. At a later stage I lengthened and widened this single slot to about 61 mm by 28 mm (Figure
1). The box is a highly simplified model of a violin.

2.1 The observed amplitude-frequency response

The box was driven into oscillation and the radiated sound recorded using the arrangement in
Figure 2. The electromagnetic exciter, which had been used in previous experiments described in
www.mathstudio.co.uk, was positioned in the centre of the flexible back plate and held lightly with
adhesive tape to stop it meandering sideways. The box was placed flat on soft furnishings, exciter
underneath, aperture on top and, for the first set of measurements, was padded around with cushions

"Medium density fibreboard, 13 or 19 mm thick



Figure 1: The wooden box, clad in MDF, with a cut-out around the aperture (61 by 28 mm) in the
top plywood plate. The electromagnetic exciter has been placed on top, though it was applied to
the bottom plate of 2-91 mm thick plywood. Not my finest piece of woodwork!
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Figure 2: External microphone records sound radiated from box or violin when the wooden structure
is driven by an electromagnetic vibrator.

to minimise sound leakage from back to front. The high quality capacitance audio microphone was
placed about 30 cm above the aperture in the box’s top, and the signal recorded as the vibrator was
driven with either a steady sinusoidal vibration, or else a linearly swept sine wave.

Figure 3 shows the envelope of amplitude recorded by the microphone as the frequency sweeps
slowly from 50 to 1200 Hz. The linearly swept frequency means that the time axis is equivalent to
frequency. The upper green curve is with the hole open, the lower inverted yellow curve with it
closed by covering it with a block of MDF. This did not make an air tight seal, but overlapped the
MDF cut-out by about 3 cm. Each such recording was subsequently played through the WaveSpectra
or NCH WavePad Fourier spectrum analysis software to determine the frequencies at the peaks in
amplitude. The accuracy of this is about +5 Hz, the uncertainty arising from the width of time
window over which the digital Fourier transform is performed. The precision of some peaks was



refined to £1 Hz in a further measurement in which a continuous sine wave was stepped through the
resonance, 1 Hz at a time, under manual control. Here are a few observations:

1.

Nominally there should be no sound with the hole closed. The sound recorded must come
from leakage from the back plate through the cushions and/or from leakage around the MDF
covering block.

. By and large the sound level with the aperture closed is significantly less than with the hole

open. So, to answer our opening question, Yes, the hole does let out the sound from the back
plate.

. There is a range between about 700 and 800 Hz where the sound is very low, but is louder with

the hole closed. Very odd!

. The Open curve has a large peak at 156 Hz completely absent from the Closed curve. This is

the Helmholtz resonance, AO.

. The Open curve also has a broad peak at about 410 Hz which is also absent from the Closed

curve.

. The Open curve has another narrow major peak at 1040 Hz. This is mirrored in the Closed

curve but moved slightly to lower frequency. Closing the hole has not completely extinguished
it.

. Both curves have a broad peak between about 550 and 700 Hz.

Open

‘Closed

Figure 3: Signal received at external microphone when flexible back plate of rectangular box is
excited at frequencies from 50 to 1200 Hz, with the 14 mm wide hole in the top plate either open or
closed. (The Closed graph is inverted.)



On the premise that measuring the amplitude-frequency response under different conditions
of the air cavity might give some clues as to the functioning of the cavity and aperture, I carried out
a second set of measurements on Box C with the 14 mm wide aperture. I removing all the cushions
except the one supporting the box, leaving everything else as it was. With the cushions removed we
hear more sound direct from the flexible back plate where the driving force is applied. The cavity
was changed in turn by covering it with the MDF block, sealing it with modelling clay (Plasticine)
and filling the box with light polystyrene balls (‘bean bag filling’). The four amplitude-frequency
curves in Figure 4 were collected with the same driving amplitude and same microphone gain so as
to be directly comparable.

1. The AO resonance at 156 Hz is suppressed by any method of closing the hole.

2. The modelling clay would give the closest seal, so the spike at about 680 Hz in the second
green curve, for the MDF block covering the hole, must be to do with air leaking from under
the block. Similar peaks are seen in the two curves on the left.

3. The large wide peak centred at 920 Hz when the cavity is filled with polystyrene balls has
no counterpart in the other three curves, so must be something to do with modifying the
resonances and/or transmission of sound through the box. The balls are so light that they are
most unlikely to apply any constraint directly onto the back plate.

The third set of measurements explored further the effect of filling the cavity with polystyrene
balls. T also enlarged the aperture to about double its width and recorded the curves in Figure 5 on
the same scale while I filled the cavity in stages with the balls. The second off bottom curve is for
the cavity full to capacity but the aperture otherwise unobstructed. The bottom curve is for the box
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Figure 4: Four amplitude-frequency spectra, 50 to 1200 Hz, recorded under the same conditions,
showing the effect of closing the air cavity by covering the 14 mm wide aperture with a wooden
block, sealing it with modelling clay, and filling the cavity with small polystyrene balls. Orange
curves are inverted.



full of polystyrene and the aperture tightly covered with a plug of modelling clay. Again let us note
the salient points without yet trying to explain them:

1. Widening the hole has moved the A0 Helmholtz resonance to 180 or 181 Hz. It gradually dies
in amplitude as the air is displaced from the cavity.

2. Similarly the peak at 573 Hz, the left of two twins in the top panel of Figure 5, fades away as
the box is filled.

3. However, the right twin peak, at 685 Hz, persists so long as the aperture is open.

4. The large peak at 1040 Hz (top panel) persists in a modified state as the cavity is filled; it
broadens and moves to lower frequencies.

200 Hz 600 800 1000 Hz 1200

90% full

Eull but hole open

Figure 5: Amplitude received at external microphone over range 50 -1200 Hz from box increasingly
filled with polystyrene balls then capped tight closed. Enlarged aperture 61 by 28 mm.



5. The smaller peak at 1130 Hz does much the same.

6. Completely sealing the hole quietens frequencies above about 700 Hz, but has the strange effect
of making the sounds louder from 300 to 700 Hz. Very odd!

So here in Figures 3, 4 and 5 we have a wide view of the phenomena, giving us plenty to think about.

2.2 Elementary acoustic characteristics of the box

I am not going to try to explain all the features of Figures 3, 4 and 5 in this article. However, to
orient ourselves, let us note some elementary properties of Box C with its two sizes of aperture.

I used the LISA finite element program to model the normal modes of the air cavity when
it is fully closed (no aperture). LISA has the facility to solve Helmholtz’s equation as explained in
§6.2. Using a velocity of sound of 341-5 m/sec the predicted natural frequencies are at (Hz)

502, 1005, 1068, 1180, 1467, 1508, 1848. (1)

These are readily understood as standing wave modes as follows. Let a be the long dimension of the
box and b its width. The listed frequencies correspond to the following ratios of wavelength A\ to box
dimension:

a:é, a =M\, b:i, a:é&b:é, a:/\&b:é, a:%, a:%&b:é.
2 2 2 2 2 2 2
To match these predictions with experiment I set up the arrangement in Figure 6. A 6 mm
diameter electret microphone on two fine wires was placed inside the cavity through a small hole in
the side of the box, and sealed. The microphone’s output was input to a computer and digitised
via the sound card at 44 -1 kHz (CD quality) using the GoldWave signal recording software. The
system was driven by a digitised pure sine wave from an NCH digital tone generator, amplified by
a hi-fi amplifier and fed to a loud speaker positioned about 150 mm in front on the cavity. By this
arrangement the loudspeaker forced vibrations in the air at the cavity’s opening. The tone generator
provided a sinusoidal wave which was ramped linearly in pitch between 50 and 1200 Hz.

Vi
loudspeaker GaRLF
microphone
|
signal signal
generator recorder

Figure 6: Arrangement for measurement of Helmholtz and higher air resonances of a cavity.



Figure 7 shows two spectra obtained once the aperture had been widened to 28 mm. They
correspond to two positions of the internal microphone. Though the amplitude varies with air
pressure across the cavity, these peaks remain at the same frequencies. The main ones are at

181, 354, 394, 573, 1053, 1135 Hz.

573 and 1132 are almost in the ratio 1:2 and probably can be matched to 502 and 1005 Hz at Eq 1
above, with the increase in pitch being due in some way to the aperture.

Mode Constraint
z displ no rotation
0-0 155 328
1-0 258 440
2-0 468 667
0-1 551 843
1-1 617 918
2-1 769 1079
3-0 776 1000
3-1 1027 1348

Table 1: LISA finite element predictions of modal frequencies in Hz of plywood plate 340 by 160 mm
under two types of edge constraint.

To complement the above air resonances, I used the LISA FEA program also to calcu-
late the resonances of the plywood back plate. As shown in the immediately preceding article on
www.mathstudio.co.uk, the resonant frequencies depend strongly on the degree of constraint. Table
1 lists the predicted modal frequencies under two edge constraints. The one labelled ‘z displ” means
that every point along the perimeter is constrained not to move out of the plane of the plate, but
rotation is allowed. The ‘no rotation’ column means that, in addition, rotation with the local edge
as axis was prevented; this is the built-in condition. You can see a great difference in frequencies.
The bottom plate overlapped the MDF sides and was pinned and glued all round to the MDF, so
the frequencies should be close to the right-hand column.

Microphone half way

Third way, near aperture

Figure 7: Amplitude received by internal microphone in arrangement of Figure 5 for Box C with
enlarged (28 mm wide) aperture over range 50 to 1200 Hz. Upper panel (green) : microphone near
centre of box. Lower inverted panel (orange): microphone near aperture.
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Figure 8: Five spectra showing the effect of adding mass to the centre of the flexible back plate.
Signal detected by internal microphone. Aperture 61 by 28 mm.

One way to persuade the resonances to reveal whether they are primarily wood- or air-related
is to add a small mass to the plate. Extra mass will lower the frequency, and this can be seen in
Figure 8 where the added masses are 0, 6, 12, 18 and 24 grams respectively. The peak marked with
the red spot moves to lower frequencies with added mass, so this must be a wood resonance. With
no weight it is at 354 Hz, so tentatively may be matched with the 328 Hz predicted by LISA using
the elastic constants of 3-ply determined in my previous article. By implication, the other resonances
are air-dominated. The two observed at 1053 and 1135 Hz may tentatively be matched with the
FEA predictions of 1005 and 1068 Hz in Eq 1 for a closed cavity.

That is a sufficient overview of the acoustic behaviour of this simplified box-with-hole model
of a violin. We move on to direct experimental evidence for Helmholtz resonances in the actual
violins and violas.



3 Experimental observations of Helmholtz resonance in violins

The A0 Helmholtz resonance can be examined in practice from two aspects:
e whether it can be excited by vibrations applied from the surrounding air,
e whether it can be excited by vibrations applied at the violin bridge.

This section deals with each of these in turn. The second mode of excitation requires effective
coupling between the wooden violin belly and the air inside as we saw in Figure 3, 4 and 5.

3.1 Air cavity resonance stimulated by loudspeaker

While I readily obtain a single musical note by blowing across the neck of an empty wine or beer
bottle, I have had no success in coaxing any musical note from a violin or viola by blowing across an
f-hole, whether by mouth on from a hair dryer. Naively I would expect that if an f-hole can affect
the sound radiated from a violin, by reciprocity one should be able to excite the f-hole resonance by
a stream of air directed at it, but that seems not to be the case.

I have therefore adopted a direct means of measuring cavity resonances using the equipment
in Figure 6. With a wine bottle the electret microphone was placed through the neck, and with a
violin or viola through one of the f-holes

Three examples of recorded response are shown in Figure 9 for a) a wine bottle, b) a violin
and c) a viola. In each case the horizontal axis is time, proportional to frequency, and the vertical
axis is the unrectified amplitude. The bottle shows only one resonance, whilst the violin and viola
have a strong low frequency resonance plus a weaker one at about twice the frequency, and some
further response at about 1 kHz. As in §2 each such recording was subsequently played through the
WaveSpectra or NCH WavePad Fourier spectrum analysis software to determine the frequencies at
the peaks in amplitude to a precision of about +5 Hz. Precision was refined to +1 Hz in a further
measurement in which a continuous sine wave was stepped manually through the resonance, 1 Hz at
a time. The measured peak frequency did not depend on the position of the microphone — various
positions were used. Checks with the box removed and the microphone in front of the speaker
confirmed that the response of the measuring system was essentially low and flat over the whole
range, so the resonance does indeed represent a major strengthening of the cavity’s air vibrations.

The bottle tone is at 112 or 113 Hz, precisely the note obtained by blowing across the
neck as recorded in a separate experiment with an external high quality condenser microphone.
This correspondence confirms that the arrangement of Figure 6 does indeed detect the Helmholtz
resonance. Note the simple, smooth shape of the peak, slightly skewed to higher frequencies. The
sharpness of the resonance as measured by the full width at half height (FWHH) is about 6 Hz, or 5%
of the peak value. The measured peak frequency did not depend on the position of the microphone
— various positions were used.

Two violins were tested. Because the design of violins is standardised, even to the size and
shape of the f-holes, their resonances were at almost the same frequencies. With a cheap factory-
made Chinese Stentor violin the resonances in Hz, measured by spectrum analysis to (+5 Hz), were

A0 =267 (Middle C), Al =474 (B}), higher ones at 552, 724, 1092, 1135, 1152,

The identification of Al is provisional, though as in §2.2 I tested to see if adding a Plasticine weight
to either the top or back plate caused the frequency to drop, but it remained constant, suggesting
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Figure 9: Frequency-amplitude spectra for a) wine bottle, b) violin and c¢) 16% inch viola, recorded
with an internal microphone in the arrangement of Figure 6.

air resonances. A better quality, hand-finished Chinese violin has A0 = 270, A1 = 471 Hz. The peak
is more highly skewed than for the wine bottle, and is decorated on its low frequency shoulder with
several smaller peaks. These may be associated with the flexibility of the walls and their rectangular
shape, but that is mere conjecture. Similar decoration with subsidiary peaks was found with Box C
— see Figures 7 and 8. The FWHH of the A0 peak is 28 Hz, from 249 to 277 Hz, 11% of the resonance
centre frequency and about +1 semitone (B to Cf).

When the f-hole near the E string was fully covered with a strip of card and masking tape,
the A0 resonance dropped to 198 Hz (low G), 75% of its open value, but the Al resonance remained
essentially unchanged at 466 Hz. This supports the view that the A0 and A1 resonances are different
in kind, the former depending on the f-hole openings and the latter only on the cavity itself. Al
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upper open upper open | upper closed | upper closed
Instrument both open | lower % closed | lower closed | lower open | lower % closed

14 inch violin 271 235 200 196 140
151 viola 244 198
16i viola 220 163
16% viola 228 174 163

Tertis viola 208 153

JMC Plywood 107

Table 2: The A0 Helmholtz frequency in Hz of a violin and five violas with the f-holes with various
degrees of occlusion. The upper f-hole for a violin is near the E string, etc.

and higher air modes are probably similar to standing wavers in organ pipes, where the frequency is
determined by the cavity length equalling half a wavelength. The velocity of sound in air at room
temperature is 341 -5 m/sec. Therefore if half a wavelength fits into the cavity at about 470 Hz, the
cavity’s length is 36 - 3 cm, which is almost exactly the length of a 14 inch violin.

The air resonance frequencies of a 16% inch viola were (+5 Hz)
A0 =224 (low A), A1=390 (G), higher ones at 455, 950, 995 Hz.

Again A1 corresponds to half a wavelength fitting into a length of 44 cm, or 17 inches. In Figure 9c
Al is weak, but its strength depends on where the microphone is placed, as one would expect for an
organ pipe mode. The A1 signal should be strongest near the centre of the instrument.

The 1 Hz stepped continuous wave technique was used to measure A0 more precisely for
several instruments, with the f-holes variously open or closed. Results are listed in Table 2. The
upper f-hole is near the E string on a violin and near the A on a viola, and similarly the lower
is near the G or C string respectively. The ‘JMC plywood’ viola is the large, asymmetric, non-
standard instrument made by the author at the start of these acoustic investigations, as described
in the companion article ‘A reconsideration of the construction and acoustics of the viola’. The first
column of numbers shows that as the belly of the instrument becomes larger, A0 drops. Covering
one f-hole drops A0 on average to 75%, down a musical fourth. As expected, it matters little which
hole is blanked off. With the violin the G hole was also half covered to leave only the central 32
mm open. The top row therefore records a reducing aperture, from 2 holes open to only % a hole,
in half-hole steps. It is therefore possible to tune A0 downwards by partially covering the f-holes,
though the amplitude decreases as the hole is covered.

3.2 Excitation of A0 resonance from the violin bridge

The measurements described in this subsection were performed using the arrangement in Figure 2.
Excitation was from the electromagnetic acoustic exciter, shown in Figure 1, held against the violin
or viola bridge. This assesses all the links in the acoustic chain from excitation of the bridge, transfer
to the top plate, vibration of the whole box structure, coupling to the air, and combined radiation
from the wooden plates and f-holes.

The electromagnetic exciter was capped with a pad of balsa wood and held steady, by hand,

against the top corner of the bridge so that most of the displacement was along the bowing direction.
In most cases it was held at the E-string edge of the bridge; I did check whether is made much

12
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Figure 10: Radiated sound spectrum from a violin excited by sinusoidal vibrations applied to the
bridge. Top panel: waveform recorded in GoldWave as frequency is swept in linear ramp. Lower
panel: cumulative spectral peak value in WaveSpectra.
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Figure 11: Swept frequency radiated sound of violin, 0 to 600 Hz, with 0, 1 and 2 f-holes closed.

difference if placed at the G string end, but it didn’t. The waveform was again sinusoidal — not the
saw tooth applied by a moving bow, but in principle more simple to understand. The microphone
was a high quality condenser type positioned half a metre above the violin. The strings were again
damped with sponge pads and the instrument held by the neck as in normal play.
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Figure 12: Swept frequency radiated sound from 16% inch viola, 0 to 600 Hz, showing effect of closing
one or both f-holes.

Figure 10 shows the response in two formats. The top panel is the full unrectified wave
recorded as time progresses in the GoldWave software, as in Figure 9. The range is from near zero
to 600 Hz. The lower panel is from the WaveSpectra program. This sweeps a window along the
recorded sound clip, taking a digital Fourier transform as it goes. The largest amplitude at each
frequency is plotted and matches well with the raw waveform above.

Figure 11 and 12 respectively show the effects of closing the f-holes in a violin and a viola.
You can see the Helmholtz resonance and how it moves to lower frequency and lower amplitude as
one f-hole is covered. Closing both holes dampens A0 totally. The frequency of A0, measured with
WaveSpectra to about +5 Hz, agree with the values determined using loudspeaker excitation and the
internal microphone, and listed in Table 2. I confirmed this on three violins and four violas.

I did not make a determined effort to measure the amplitude of the sound radiated at AO,
but it does fall if one f-hole is covered. In one test both f-holes were initially covered with card and
the acoustic exciter held by one person against the bridge while a second person carefully uncovered
one f-hole then both. This was done with continuous wave excitation at 440 Hz, where the violin
has a large response. The amplitude of this sound remained virtually unchanged as the holes were
uncovered. This means that the large stable peak near 440 Hz can serve as a reference for amplitude.
The amplitude of A0 relative to this reference peak is in the range from about 90% to 110% and this

14



drops to about 50% to 65% for a violin when one f-hole is covered. For a large viola it falls from
about 50-60% to about 20-25%. Roughly, therefore, the amplitude falls to about half, roughly equal
to the decrease in area when one hole is covered.

I carried out a limited series of tests actually bowing the instrument. Much as in the ‘loudness
curves’ of Hutchins and Saunders to be described in the next section, I played either a chromatic
scale or glissando slide on the instrument while recording the sound about two metres away with the
hi-fi quality condenser microphone. Figure 13 shows the GoldWave wav. files for a chromatic scale
bowed on a violin G string for both f-holes open, one or other closed, and both closed. It was only
a cheap violin, so aurally the tone quality is not high. With both holes open (the usual case) the
tone was full if rather rough. With the upper hole closed, it sounded more nasal, rather like a viola,
and more strangled. Surprisingly, the tone with only the lower hole closed was better though still
nasal. With both closed the sound was thin and ‘boxed-in’, apart from on the open G string. These
are, of course, just subjective assessments, and indeed the bowing of each note could not be identical
even though nominally the same detaché strokes were bowed. With both holes open A0 is at 271
Hz (Table 2), about Cf above Middle C, and one can see in Figure 13 the slightly larger amplitude
here. With one hole closed A0 falls to about 200 Hz, roughly the open G string. This G (first note)
is indeed prominent in the middle two panels and we might be led to ascribed this to A0 were it not
that the same G is strong also in the bottom panel where A0 has disappeared. So the louder sound

bothopen

G f-hole closed |

Stentor Macc both f closed - chromatic on G.way.

both closed

Figure 13: Waveforms as a chromatic scale is played by bowing a violin on the G string under four
conditions of the f-holes.
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here is probably more to do with it being an open string 2. Moreover, a strong response at Cy is
clear in the lower three panels, even though A0 is no longer at Cj in these three cases. So, though
there is some aural effect of AO, this short exploration is far from conclusive.

This section has presented conclusive evidence for the existence of the Helmholtz and higher
air cavity resonances of a violin and viola, and also shown that A0 can be excited by lateral motion of
the bridge, as produced by the bow in playing. The effects on perceived tonal quality while playing
the violin with a bow, however, need further investigation. We therefore look in the next section at
some of the older pioneering literature on how the air resonances and f-holes are thought to affect
the tonal quality of an instrument.

4 Published literature on the musical significance of A0

Firm statements about the air and main wood resonances have been made by the USA pioneers
Carleen Hutchins and Frederick Saunders in papers republished in ‘Musical Acoustics, Part I: Violin
Family Components™. Hutchins was a founder of the Catgut Acoustical Society of America. Many
papers on violin acoustics have been published in its journal, though at the time of writing they are
not available on the internet, nor does my local university library subscribe. There must be a wealth
of information there which most people cannot access.

To understand Hutchin’s terminology, refer back to Figure 8 of §2 which shows spectra for
Box C. A0 is the Helmholtz resonance at 181 Hz, A1l the higher air resonance at 572 Hz and the
peak at 354 Hz, which moves to lower frequency when mass is added, is the ‘main wood resonance’.
In Table 1 this is labelled 0-0 and predicted by FEA to be at 328 Hz. In previous articles I have
called this the breathing mode because the whole plate flexes in and out like a diaphragm.

Hutchins, Saunders and others found the loudness curve to be a useful tool. Examples are
given in Figures 14, 15 and 16. A chromatic scale is played with the bow, the player producing
the loudest sound without the note breaking up. The loudness of each note is measured with a
commercial loudness meter. The black dot in the figures is the main wood resonance, the white
circle the AO air resonance, and the low frequency grey circle the ‘wood prime’ resonance — more
about that shortly. In a 1962 review paper Hutchins (page 8 et seq.) says

Tests show that a good violin usually has its main wood resonance within a whole tone
of 440 Hz, the note A, to which the second off highest string is tuned.

She also states

In a good violin the main wood resonance and the main air resonance fall approximately
7 semitones, or one musical fifth, apart. In some poor instruments they can be as much
as 12 semitones (one octave) apart.

The pioneers appreciated that a listener’s subjective impression of the loudness of notes is more even
across the frequency range than these loudness curves would suggest. This is because the ear and
brain attribute to the fundamental pitch all contributions from higher harmonics, some of which may
actually be stronger than the fundamental. Nevertheless, the wood prime resonance is somewhat
mysterious. Hutchins says that

2 A string stopped with a finger has a softer end condition than one clamped at the wooden nut, so stopped strings
generally have a softer, sweeter tone than open strings.
3Ed. C Hutchins, published Dowden, Hutchinson and Ross inc, 1975
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An octave below the main wood resonance there is almost always another strong peak
of loudness — it can be called a subharmonic. If one harmonic of a complex tone is
strengthened, the ear will hear an increase in loudness of the note as a whole with a slight
change in quality but no change in pitch. By this process the wood peak is strengthened
by the tone of the main wood resonance an octave above. The subharmonic of the main
wood resonance benefits the lower tones of the violin.

Hutchins, Saunders and Hopping? described experiments into subharmonics which ‘strengthen the
lower tones of the violin which are weak because the area of the body is too small to emit natural
responses in this range.” From this paper I understand that a subharmonic seems to be the sym-
pathetic resonance at low frequency when a note corresponding in pitch to a harmonic of this low
note is bowed on the violin. They give the analogy of holding down the key C an octave below
middle C (to lift the damper) and then striking middle C; the vibrations from middle C stimulate
the lower string and cause it to supply a weak note one octave below the note actually struck. For
this principle to apply to a violin the instrument would need to have a resonance at low frequency
for this to be stimulated by a note an octave higher; I cannot see this being the case, so still find the
wood prime subresonance a mystery.

1J. Acoust Soc Amer. Vol 32, No 11, 1443-1449, 1960
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VIOLIN “LOUDNESS CURVES” compare maximum sound levels produced at semitone
intervals by a good 1713 Stradivarius (top), a poor 250-year-old violin of doubtful origin
(middle) and a poorer, somewhat older instrument credited to P. Guarneri (bottom). Only
the first shows desirable spacing and strength of wood (black dot), “wood prime” (gray
dot) and air resonances (open circle). Letters at bottom indicate tuning of open strings.

Figure 14: Loudness curves of three violins of different qualities, after Carleen Hutchins.
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Hutchins also says

Spacing the main wood and air resonances about a half-octave apart spreads these peaks
so that the air-tone peak falls nicely in the middle of the octave between the wood
resonance and its subharmonic. ...... In the best violins the main wood and air resonances
invariably fall within a semitone or two of the frequency of the two open middle strings,
the wood resonance corresponding to the higher tuned string (A on a violin). ...... This
is not true of the viola and cello. In these the two resonances fall 3 or 4 semitones higher
than the middle two open strings. ... The resonances are too far above the lower notes
of the instruments and these suffer in strength and quality.

In a paper submitted in 1986, Carleen Hutchins describes comprehensive experiments to see
whether the higher air cavity resonances have an effect on the tone quality of violins ® She drilled
dozens of holes through the ribs to puncture the air cavity, exploring the effects of plugging some
of these with cork or foam. She also buried this ‘Swiss cheese’ violin in sand to dampen the wood
modes, and concluded that

There is a marked decrease in tone quality, especially in the lower octaves, when the
amplitudes of the cavity modes are greatly reduced by either 1) opening a series of
small holes all around the ribs, which shifts the frequencies of these modes up the scale
away from the lower octave: or 2) damping the high-Q cavity modes in this range with
foam plugs inserted in the rib holes, which also shifts the mode frequencies up the scale.
These findings show the existence of strong interactions between the resonances of the
mechanical structure of the violin and some of its cavity modes, and indicate that these
interactions are musically significant.

Another noteworthy book is ‘The Physics of the Violin’ by Lothar Cremer®. This has much
worthy discussion and analysis of physics, though perhaps does not address the key issues in a way
which would assist a violin maker or technician. Cremer (p 253) confirms that the f-hole resonance
lies near the open D string on a violin ‘and may be found by sliding the finger up and down the
lowest (G) string. ... If one f-hole is covered with adhesive tape, the resonance is lowered by a
tritone, to A flat.” My measurements in §2 clearly show flattening by a further semitone.

5J. Acoustic Soc America, vol 87, 392-397, 1990.
61981, translated into English and published 1984 by MIT Press.
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Figure 16: Loudness curves for 5 Stradivarius violins, after Saunders, 1937.

George Bissinger is another who has published much on violin acoustics. He advocates A0
as one of five ‘signature modes’ of a violin” which are purported to be sufficient to characterise the
tonal quality of an instrument. Two are AO and A1, which Bissinger says are coupled to each other
(though I do not know what he means by this). The other three signatures are modes of the violin
belly, which he calls the corpus, being the top and back plates plus the ribs. One mode, called C2
or CBR (‘centre bout rhomboid’), is said to have shear-like in-plane relative motion of the top and
back plates. The other two, called B1+ and B1-, involve the wood to one side of an f-hole moving
(transverse to the plate surface) in the opposite direction to that on the other side. According to
Bissinger B14+ and B1- radiate strongly directly from the wood and also because they pump air at
the f-holes.

Bissinger states that strongly radiating A0, B1+ and B1- modes over the pitch range of
the open strings on a violin (196 to 660 Hz) are crucial for the sound. However, he finds that all
violins, excellent and poor alike, measure similarly over these five signature modes and other physical

"e.g. Q. Bissinger, J. Acoust. Soc. Am. Vol 124, 1764-1773 (2008).
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properties. This means that physical measurements can identify a violin from other instruments,
but do not pick the Stradivarius from the student’s Stentor. The only measurements distinguishing
highly prized violins was that they were more even across the frequency range and strong in the
lowest register, largely due to clear radiation from the f-holes at A0.

My own reaction to these studies is one of interest but some confusion and scepticism. While
I do not doubt that quality investigations have been made by these various researchers, I am puzzled
by the influence attributed to A0 over a frequency range which is more than one semitone either
side of its centre frequency. Are the small peaks on the low frequency shoulder of A0 (Figure 9 b, ¢)
musically significant? Also I cannot see how A0 and A1 can be coupled except being both determined
by the dimensions of the belly. Moreover, I do not understand this wood prime subresonance if it is
not actually a low frequency vibrational mode of the instrument. Nevertheless, these researchers say
clearly that the A0 and main wood resonance should be strong and placed in pitch close to D and
A of a violin’s open strings, and as close to G and D on a viola as can be achieved. We know that
A0 can be tuned by changing the dimensions of the f-holes, and the wood resonance is determined
by several adjustable parameters, of which I suspect the edge constraint to be probably the most
important — more so that the thickness of the wood, even though the commonly held view is that
the plate thicknesses are crucial. Tuning of violin plates is a topic with a wide technical literature
and probably an even wider folk lore.

5 Classic theory of the Helmholtz resonator

Before deriving the classic formula for the A0 resonant frequency it is informative to consider the
alternative case in which the fluid, instead of being a compressible gas, is an incompressible liquid.
Picture a submersed rigid container of sectional area A, with a narrow neck of sectional area A,
opening into an infinite external pool of liquid. Suppose also that at its opposite end the container
is closed with a piston, sectional area A., which vibrates sinusoidally with amplitude b. The peak
displacement of volume in the body of the container is £ A.b and, because the liquid is incompressible,
the same volume must alternately be ejected and sucked in through the neck. Clearly in this situation
the fluid in the neck behaves as a plug moving to and fro through a magnified distance A.b/A,. On
replacing the liquid with a gas, the essential difference is that the change in volume within the cavity
can be effected without an externally driven piston, but instead by the elastic bulk expansion and
contraction of the contained gas. In the case of a violin where the box has flexible walls vibrating
with the string and bridge, some of the piston-like driving action still occurs.

5.1 Derivation

The left panel in Figure 17 shows the basic rigid resonator of volume V', and the right panel its
representation as a mass m on a spring with constant S. The narrow neck to the resonator has
length L and cross sectional area A. This is a low frequency mode of vibration in which changes in
air pressure travel almost instantaneously through the air in the cavity, so that at any instant the
pressure inside is essentially uniform. The plug of air in the neck moves periodically up and down
against the cushion of air in the cavity.

Sound vibrations take place adiabatically since there is not enough time in the pressure cycle

for temperatures to stabilize. For a fixed mass of perfect gas undergoing adiabatic expansion or
compression, the total pressure is related to volume by

PV7 = constant
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Figure 17: Diagram of a Helmholtz resonator and its representation by a mass on a spring.

where v = C},/C, is the ratio of specific heats. In differential form this is

or _ oV
p - Ty

The bulk modulus K of the gas is defined by the pressure change associated with a fractional change
in volume:

5P 5P
= - = — - . 2
SV IV 5V )

K =~P is also related to the velocity of sound in air,® ¢, by

K
c=1\/—, p = density of air. (3)
V »

Suppose the air plug is displaced a distance & down into the neck. This compresses the air and the
out of balance force causes acceleration according to Newton’s second law:

2
force = mﬂ .
dt?
The volume decreases by A¢ so from Eq 1 the pressure increases by
5P - K28
Vv

and the restoring force is K A%2¢/V. Since the mass of the plug is ALp, Newton’s law describes simple
harmonic motion:

A2£ d2£
KES - ALpSS
Vv P
d? ZA
from which %§+w2m = 0, w? = CL_V (4a)

In hertz the resonant frequency is

c A
elm = — _— 4b
fHel 27rVLV (4b)

This is the classic formula in many textbooks. It states that if the area is halved, the frequency
should drop to 1/v/2 = 71%, or by 6 semitones. This can be applied to the f-holes of a violin since
they will act as one combined mass because the pressure in the cavity is the same at each hole. The
average of my measurements reported in Table 2, §2 is only a 75% drop, one semitone less.

8The fact that ¢ does not vary with pressure is due to the density of the gas also being proportional to P.
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Figure 18: Response of a Helmholtz resonator driven by a tone burst of sine wave just below its
resonant frequency.

5.2 Damping and ()-factor

The derivation in 8§5.1 is clearly only an approximation since it ignores sound radiation from the
aperture plus viscous and other losses of energy which dampen the oscillations. Here I review the
main features of any damped harmonic oscillator, leaving the theory particular to a Helmholtz
resonator until §5.4. Essentially Newton’s second law gives the equation of motion

ME = -SE-RE+F

where M is mass, S¢ a spring force, R¢ a dissipative force depending on particle velocity &, F is an
applied driving force, and the dot indicates time derivative. The solution consists of two parts:

e a particular solution fitting the given form of F', which gives the steady state behaviour while
F' is operating, and

e a complementary function which satisfies the equation with F' = 0, which describes the transient
when F' is switched on or off.

The complementary function is

§ = Cexp(—%t) cos{t 5 e + qb}- (5)

M 4M?
Here C is an arbitrary constant representing peak amplitude and ¢ an arbitrary phase, both of which

need to be chosen to match initial conditions. Two points can be noted from Eq 5:

e The displacement ¢ decays exponentially, reducing to 1/e = 37% of its initial value in a time
7 =2M/R, and has all but disappeared in time 47.

e The prevailing frequency during this decay is

S R? , 1 1
-\ =-— = - = 1-—— 6
Wy \/M 4M2 \/wo 7_2 wo (OJ()T)2 ( )

where wg = \/ZS /M) is the undamped natural frequency, i.e. when R = 0. For a Helmholtz
resonator wy is given at Eq 4. So light damping lowers the observed frequency a little.

22



Figure 19: Decay of response after a driving tone burst at about twice the resonant frequency.

The two types of response, driven and transient, are nicely illustrated in the two wave traces
in Figures 18 and 19. These show the responses recorded by a microphone when Box C (see §2) with
flexible plywood back plate and smaller aperture (53 by 14 mm) is excited by a tone burst from an
electro-mechanical exciter in the arrangement of Figure 2. The Helmholtz frequency, which is the
natural frequency wyp, is 134 Hz. The decaying signal has dropped to about 37% of its peak value
after about 3 -4 cycles at 134 Hz, lasting 25 ms. Figure 19 shows clearly the change in prevailing
frequency when a driving oscillation at about twice resonance (250 Hz) is suddenly turned off.

Regarding the driven state, let F' = coswt. A particular solution is found by trying possible
solutions of the form & = A coswt + Bsinwt. The result is

(S — Mw?)coswt + Rwsinwt
M?2w* — (2M S — R2)w? + 52

§ = (7)
The total displacement with F' switched on is the sum of Eqs 5 and 7. However, when F' has been
steady for a while, the exponential in Eq 5 has taken the complementary function to zero, and the
instantaneous displacement is given by Eq 7 alone. Its amplitude is found using the trig relation
Acoswt + Bsinwt = VA2 + B2 cos(wt + ¢ ), and it so happens that A? + B? in the numerator equals
the denominator. The amplitude is therefore

1
€l = \/ (Mw? - S)? + R?w? . (8a)

You may prefer this in terms of wy and 7:

€] = : (8b)

The phase of the displacement satisfies

tang =

A graph for the case M = S =1, R =1/10 is plotted in Figure 20. Top of the peak, where
d¢/dw =0, is at
S R? 5 2

k= Ve T VR )
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Figure 20: Theoretical frequency response of a damped harmonic oscillator driven at frequency w,
plotted as function of w/wy. Case M =S =1, R=1/10.

which, interestingly, is not the same as the damped resonance frequency of Eq 5. In the example of
Figure 20 it is all of 99 -75% of the undamped resonance. The value at the maximum is 1/(Rwyg).
The velocity of the vibrating mass is obtained by differentiating Eq 7:

£ = %(RUJQCOSOJt + w(Mw® - S)sinwt ) (10)

where H is the denominator of Eq 7. Now it is common in vibration studies to consider the applied
force as a complex quantity e’ and define a complex mechanical impedance as the applied force
required to produce unit particle velocity. The impedance Z can be shown to be

7 - R+i(Mw—§). (11)

The real part is the resistance causing energy dissipation, and the imaginary part is the reactance.
It is usual to define the resonance to be where the reactance is zero, which is where w? = S/M = w§.
You will see from Eq 10 that this is where the velocity component which is out of phase with the
coswt driving force is zero. Though wy is different from the peak wy in Eq 9, for low damping the

difference is barely detectable.

The broadening of the peak in more significant — note the strong similarity to the frequency
response of the wine bottle in Figure 9a, including the raised shoulder on the low frequency side.
The @ factor for a resonance is the reciprocal of the ratio (power lost : power stored) per cycle. An
equivalent definition used by Morse and Ingard has ) as the number of cycles which elapse, at wy,
for the amplitude to reduce to e ™ = 4-3% of its initial value once the driving force is switched off.
This is M

wo woT
Q=—"fp =5 (12)
For Figure 20 @) = 10, and this happens to be about ) for the Box C Helmholtz resonator whose

decay curves are shown in Figures 18 and 19°. For small R I calculate that the FWHH of the peak

97 x 134 Hz x0-025 sec = 10-5
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is about

2
FWHH in radians/sec = \/gg = ﬁ, (13)
T

giving about 0-173 for Figure 20. Then

V3 fo

@ Wi

(14)

where the peak frequency fo and FWHH are measured in Hz. This affords a method for measuring
the dissipative force R in a Helmholtz resonator since we know the mass of the air plug. For the wine
bottle example, the volume of the oscillating air plug is about 27 cc and the density of air at room
temperature is 1-22 kg/m?, making the mass about 33 mg. The rate of working of the dissipative
force will give an upper limit (because of other loss mechanisms) for the power radiated from the
resonator as sound. Interesting as this is, I will not pursue it further. I merely refer again to the wine
bottle resonance in Figure 9a as an example. The FWHH is 6 Hz = 37 -7 radian/sec so 7 = 0- 092
seconds. The peak is at 112 Hz so Q ~ 112v/3/6 = 32. So in 32 cycles at 112 Hz, lasting about
0-29 seconds, the sound from the wine bottle will die to 4% of its initial amplitude — and become
inaudible.

A final general observation: as w — 0 the amplitude in Eq 8 a, b tends to 1/S. As w — oo
it tends to 1/(Mw?). Morse and Ingard (p 48) point out that all damped harmonic oscillators
are stiffness controlled at frequencies much lower than wg, resistance controlled near wgp, and mass
controlled well above wg. This is why the curve in Figure 20 is not symmetric.

Most of the above discussion applies generally to any driven damped harmonic oscillator.
Theoretical estimates of the resistance R and of () of a Helmholtz resonator are noted in §5.4. below.

5.3 Neck length correction and multiple apertures

Another caveat in relating Eq 4 to reality is that the volume of the oscillating air plug is not
adequately defined by the nominal dimensions of the neck. Intuitively we know that the plug fades
at one end into the ambient atmosphere and at the other end into the air in the cavity. This is
accounted for by a ‘neck length correction’.

Here is a simple intuitive model of the total air volume in motion at the neck, and hence the
effective length of the neck. We consider an elliptical slot, length d, width w. Figure 21 illustrates
three volumes of air: the plug within the neck (green), and two hemi-ellipsoidal caps (blue and
turquoise), one outside and one inside the resonator cavity. Viscosity will maintain a boundary layer
round the edge of the hole, making the displacement there almost zero. The maximum distance to
which the ellipsoid of vibrating air extends into the ambient space is open to judgement, but it seems
plausible that we will not be far wrong if we take it to be the geometric mean of the major and minor
dimensions of the aperture, that is v/dw. The volume of the combined external and internal caps is
then mdw\/dw/6. The sectional area of the neck is mdw/4 so the volume in the caps is equivalent
to an extra length of 2\/@/3 on the geometrical length L. Therefore the overall acoustic length is
about

Lesp ~ L+ 2Vdw (15)

where d is the longer dimension of the aperture, w the shorter. This includes a cylindrical neck of
diameter d as a special case: Lqfs ~» L +2d/3. In a violin the top plate is only about 3 mm thick
compared with the long dimension of an f-hole of about 75 mm. The neck correction therefore will
account for almost the total length of the air plug.
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Figure 21: Simple approach to estimating the neck length correction. The shapes represent three
volumes of air in vibration at the neck in the cavity. The external cap has been displaced to show
the cross section.

Eq 4 was quoted without derivation in my first article in which I describe constructing the
large asymmetric viola mentioned in Table 2. In that early article I reported an experiment with a
glass wine bottle with parallel neck. This is a good approximation to an ideal Helmholtz resonator
in that the walls are essentially rigid and there is a well-defined neck. The mechanism for exciting
resonance by blowing involves eddies separating at the leading edge of the opening (‘vortex shedding’),
so causing pressure oscillations within the bottle. Their frequency depends on the curvature of the
lip of the bottle and is proportional to the air flow rate. So, by carefully judging how hard to blow,
one can match the vortex shedding frequency to the Helmholtz frequency and excite a musical note.

For my experiment then, the bottle had a nominal capacity of 0-75 L, with neck inner diameter
1-88 ¢cm and length about 7-5 cm — rather ill-defined because of the curved shoulder on the bottle.
Eq 4 predicts frem = 121 Hz (Bf), compared with Bb as heard. I found the effective value of A/L
by adding water to the bottle to change the air volume. The relationship between frequency and
volume (to the bottom of the neck) was close to f2V = 9-7 ST units, making A/L = 0-00325, compared
with 0-00370 from nominal dimensions. Therefore the effective length is 8-5 cm, 1 cm longer than
assumed. This, then, is the experimental neck length correction. Eq 15 would add 2x1-88/3=1-25
cm to the length.

A formula equivalent to Eq 4 can in principle be derived for the case of several apertures,
each with its own neck. Here is my own argument for the case of two apertures. Let them have
sectional areas Aj, Ag, acoustic neck lengths (following Eq 15) of Li, Lo, and let the plugs of air
contained within have masses mi, ms and undergo displacements =1, x2 as the pressure within the
resonator increases by dp. The forces moving the two plugs of air are respectively A10p and A20p so
the equations of motion are

AlK d2$1 AQK

5V = -
v Mg v

d2x2
dt? -

(SV = —Mm2

Again K is the bulk modulus and §V, the change in volume, is Ajxq + Asxs. As in §5.1 we look
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for periodic solutions where z1 = bcoswt and x9 = coswt, b being the ratio of the amplitudes. The
coupled equations of motion are

ALK (Ab+ A) +bmiVw? = 0, AsK(A1b+ Ad) +maVw? = 0 (16)

and their solution is

w2 B K(A22 mq + A12 mg) b = A12 mo (17)
- mimoV ’  AZmy
2 1
Using M, = A1 L1p, My = Ay Lop, K = ¢?p we arrive at
C 1 Al Az] L2
S i et ) b == 18
YT o V[L1+L2’ I (18)

The formula admits to only one resonance since there is only one ‘spring’, despite there being two
holes. It also implies that the aperture with the largest ratio of area to effective neck length will
dominate. This is plausible — a wide hole in a thin shell offers a smaller impedance to motion than
a long narrow neck.

5.4 Other theory of the Helmholtz resonance

Many experimental and theoretical studies have been made of air resonators, but I don’t intend to give
a lengthy review. Analysis to quantify the effective length L.y, was first developed by Helmholtz and
Lord Rayleigh and reported in volume II of the latter’s monumental ‘Theory of Sound’. Rayleigh’s
detailed Chapter 16 approaches the problem in three ways, considering in turn the aperture as a hole
in an infinitesimally thin wall, then in a wall of finite thickness, then as the open end of a cylindrical
pipe. Using first an electrical analogy with the capacitance of an insulating plate with aperture in a
conducting matrix, Rayleigh gives this formula for the resonant frequency

F= e
™V V
where % is the ‘conductance’ of the aperture. Now the conductance of a length L of electrical
wire, sectional area A, is proportional to A/L — the reciprocal of its resistance — so similarly the
acoustic conductance of an aperture is A/L, giving Eq 4. Moreover, just as the total conductance of
a collection of parallel electrical resistors is obtained simply by adding, so n holes have an aggregate
acoustic conductance Y A, /L,, giving us Eq 18 again.

Rayleigh discussed several ways of quantifying 4". Neglecting all damping, he analysed the
case of an elliptical aperture in a thin flat plate, obtaining an exact result (within his assumptions)
in terms of elliptic integrals. Ellipses of all aspect ratios had conductances greater than that of a
circle of equal area, but the increase is only 20% for an aspect ratio as large as 6. He concluded that
€ for any oval slot will be just slightly larger than that of a circular aperture having the same area.

Rayleigh goes on to estimate that the length correction (counting both ends) for a circular
aperture of diameter d lies between

d d
™ .785d and ST~ 08494, (19)
4 3

with the most likely value being about 0-82d. This is to be compared with the 2d/3 proposed in
§5.3. For oval holes he proposes replacing d by 21/ A/7w, which gives the same area.
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The theory of damping by radiation appeals to arguments which replace the aperture by a
thin massless oscillating piston of air in a rigid wall. Related arguments compare the opening in the
resonator’s neck with the open end of a long pipe, with or without flange. A formula applying to
damping by radiation only is quoted in another textbook!'?. It leads to the formula for Q

where L.y is the effective length of the air plug at the neck. However, I don’t find this formula very
useful. Applied to the wine bottle with V' =750 cc, Lesr =9 cm and A = 3-12 cm?, it gives Q = 843!

Morse and Ingard (Chapter 9) spend several pages developing analogies between electrical and
acoustic circuits. They develop expressions for my M, R and S of §5.2 above, where the resistance
R allows for both radiation and viscous damping. They take into account the phase changes by
calculating the complex impedance of the piston, resistance plus reactance. The reactance relates
to the piston pushing sound back into the cavity where a standing wave builds up. For a circular
piston their results for viscous damping only!! are (page 490)

Wwyp = C éA “ (21)

where D is the perimeter of the opening, A its area and h the thickness of the plate, assumed thin. b
is the thickness of the boundary layer: b =+/2u/(pw) for air vibrating at f Hz. Using u, the dynamic
viscosity at 18 yPasec and p, the density at 1.25 kg/m?, b is about 0-00214 \/f metres. Morse and
Ingard therefore predict that ) should vary as f 14 pecause of viscosity. For a circular aperture
their formula for the resonant frequency wy has D = wd so corresponds with an effective length to
the plug of air in the aperture of md/4, as previously obtained by Rayleigh, Eq 19. Their formulae
are not applicable to the wine bottle because of its extended neck, but would apply to violin f-holes.
Taking f = 270 Hz, A = 1100 mm? for both holes, D = 4 x 80 mm and h = 2-4 mm gives Q about
27, a reasonable value. In §3.1 I report for the violin in Figure 9b that FWHH is about 11% of the
resonant frequency AQ, corresponding to () being about 17.

In an interesting paper'? Michael Moloney carried out experiments on three bottles with
necks, very similar to my own experiments described above and in the next section. He makes
careful comparison with theory regarding both the acoustic conductivity of the neck and the @
factor. He finds for the 750 cc bottle which looks most like mine that @ is about 40 to 45 depending
on frequency. This compares with the 32 I found for the empty bottle. However, the () due to
radiation alone was between 1170 and 1970, of the same magnitude as the 830 I calculated. Moloney
presents a theory of viscous losses which, as expected, occur mainly in a thin boundary layer around
the inside of the neck. There, on the glass side, the air is stationary, but moving at full speed a
fraction of a millimetre away. Like Morse and Ingard, he finds an increase in ) with frequency, and
shows that ) due to viscous losses at the inner bottle wall is in the range 43 to 56. Therefore @ is
dominated by viscous losses and radiation makes but a small contribution. I find some support for
the f 1/4 dependence of () in Molloney’s experimental results. Fitting a power-law trend-line to his

The Science and Application of Acoustics by Daniel Raichel, Springer, 2000. There are misprints on p145 where
at equations 7.60a, b k should read k2. Similar reasoning is used to estimate the sound radiated from the open end of
a tube, with or without flange.

HThey give a much more complicated formula which includes radiation damping.

2Am. J. Physics, Vol 72 p1035, 2004. T carried out my experiments before coming across Moloney’s paper.
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five data for the 75 cc wine bottle, I find scatter about a power law @ ~ 10-7 %28, though for his
other two bottles the exponent is about 0 - 36.

Another interesting paper is by Guy Vandergrift'®. He had been using the air resonance of a
violin as a teaching tool for students on the damped driven harmonic oscillator. He describes three
ways for measuring the Q-factor of the resonance and discusses several of the approximate analytical
approaches to determining its frequency, but concludes that

‘We see that a large number of complications make it very difficult to calculate the
resonant frequency to precision better than 10%.’

In my study I have circumvented many of these complications and approximations by using finite
element analysis, which deals with all the geometrical complications of the shape and size of the
aperture. Its main limitation is that it assumes rigid walls.

6 Helmholtz resonance of a wine bottle by experiment and FEA

The spectrum in Figure 9a shows that a wine bottle has a simple resonance. I had measured the end
correction in my previous article, as summarised in §5.3. However, I decided to measure it again, on
another bottle, with the aim of making a close comparison with finite element modelling using the
LISA program. This was a starting point for FEA of a variety of openings, leading to modelling the
f-holes of a violin (see §7.2).

6.1 Measurements on a bottle

The bottle became available after enjoying the 750 cl of Gran Familia tempranillo it contained. The
method used this time was for me simply to blow across the open neck and record the sound with an
external microphone about half a metre away. Water was added to the bottle in stages to reduce the
volume of air, the amount being determined by weighing the bottle and contents. The Helmholtz
frequency was determined as a function of cavity volume, as listed in Table 3.

Total Weight Volume Meniscus Frequency

weight (g) water (g) cavity (cc) height (mm) (Hz)
476 0 740 0 115
520 44 696 20 120
638 162 578 57 130
720 244 496 78 140
798 322 419 100 152
872 396 345 120 168
949 473 268 140 194
1032 556 185 163 226
1107 631 110 181 291
1136 660 81 189 339
1178 702 39 202 454
1190 714 27 206 523
1216 740 1 223

Table 3: Measurements of the musical note produced by blowing across a wine bottle

3 Am. J. Phys. Vol 61 No 5 May 1993, p 415-421.
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Figure 23: Effective neck length as a function of air volume in the wine bottle.

Here are some experimental details. The signal was digitised in a computer at 44,100 Hz and
captured with the GoldWave software with the resonant frequency determined by spectrum analysis
using the WaveSpectra program. Various spectrum window functions and running sample lengths
were tried, but the results were satisfactorily consistent. The accuracy of frequency recording and
spectral measurement was checked at 440 Hz by listening to beats against a mechanical tuning fork.
The uncertainty in the Helmholtz frequency is less than 5 Hz. The scales were also calibrated against
known weights and found to be correct and reproducible to within 2 grams. The water was cool,
from the tap, and the air temperature about 16° to 17°C. The velocity of sound in air ¢ depends on
temperature 7°C according to ¢ = 331-3+0-6067" so at this temperature it was 341 -5 m/sec.

The internal dimensions of the bottle had to be measured as accurately as the tools available
would allow so that the finite element mesh model would be a close representation of reality. The
water height to the water meniscus measured with a rule as a function of weight allowed the internal
diameter to be determined. The neck was not an exact parallel cylinder. Its internal diameter was
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determined by adding water 5 ml at a time from a calibrated clinical syringe and measuring the
height to the meniscus. I fitting a cubic curve to the graph of volume against height, differentiated
analytically to obtain the sectional area as a function of height, and converted to diameter. This
was adjusted by about 2% to be consistent with photographs of the neck taken with a bright light
behind. The diameter at a distance about 1 cm into the neck as measured with callipers was 1-92
cm. The total volume of the bottle was 764 cm® (ml or cc), with the volume of the neck being about
24 cc. Therefore its sectional area was 3-12 cm?.

Classic theory, Eq 4, predicts that frequency will increase proportional to 1/ V'V, V of course
being the volume of the cavity excluding the neck. Figure 22 is a graph to test this. There is only
modest departure from a straight line through the origin.

At each stage in changing the volume the effective length of the neck in Eq 4 can be found
to make the predicted frequency agree with the measured. Values so obtained are plotted in Figure
23; it is typically 8-9 or 9-0 cm. The actual neck length is about 7-7 c¢m, as near as can be judged
from where the internal shoulder begins. The length correction is therefore almost constant at about
1-3 cm until the volume of the cavity (up to the shoulder) becomes small, when it decreases rapidly,
even becoming less than the physical length, i.e. the ‘spring’ extends a little into the neck.

In a final set of tests I produced the bottle’s note with a hair drier instead of blowing. The
drier had four temperature settings, allowing a rough assessment of the effect of velocity of sound
on the resonance. The air temperature measured about 10 cm from the drier was 16°, 22°, 31° and
46°C respectively on the four settings. With the drier on cool, the bottle’s note was the same as
when blowing by mouth. With the bottle empty the frequency increased from 171 to 178 Hz between
the cool and hottest settings. With the water level up to 177 mm it increased from 275 to 289 Hz.
This 5% increase corresponds almost exactly with the ratio of sound velocities at 46° and 16°C —
358 -3/341-1. A further increase to 299 Hz was achieved by first blowing the hottest air stream
directly into the bottle and allowing it to warm up for a couple of minutes. This is a 9% increase,
well over a semitone.

6.2 Finite element modelling of the bottle

The author was privileged to have an evaluation, pre-release copy of the LISA 8 finite element
program. One of its analysis types is solution of the Helmholtz equation for standing acoustic waves
in an air space bounded by rigid walls. The total pressure in the gas is a constant ambient pg
modulated by a small sinusoidal acoustic addition p,(x,y,z)coswt at position (z,y,z). The wave
equation then implies Helmholtz’s time independent equation for p,

1 0? w?
2p, = =2 Pa implies  V2p, + —5Pa=0
c

where c is the velocity of sound. Though LISA’s method is restricted to totally closed spaces with
rigid boundaries, it is possible to model a rigid object with apertures such as an open bottle if it is
embedded in a much larger outer space, a ‘room’, which itself is closed. One solves for many normal
modes, most of which relate to standing waves in the room. However, it is possible to distinguish
resonances of the bottle alone because then the air in the room is all at the same uniform pressure.

The mesh is shown in Figure 24. This models the air in the bottle, the glass being its

boundary. Glass is essentially rigid, as is assumed in solving Helmholtz’s equation. Note the slight
taper of the neck. For Helmholtz’s equation LISA 8 allows only linear hex8 elements, so that it what
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Figure 24: The wine bottle modelled as a finite element mesh.

the mesh is built from. There are 1,600 elements in the neck, 2,700 in the rest of the bottle. The
outer room was roughly cylindrical, 150 cm diameter and 200 cm long, though in the analysis these
dimensions were varied to ensure that air cavity modes were correctly identified. There were 17,920
elements in all, and 21,057 nodes. The solution calculates the pressure amplitude p,(z,y,z) at each
node, meaning that the standing wave is p,(z,y, z) cos(27 f,t), where n is the mode number. Figure
25 shows a longitudinal section through the 3D model at the Helmholtz resonance, fy. Observe that
all the change in pressure occurs within the neck; the pressures in the external space and inside the
bottle are constant, at opposite extremes of those predicted.

The bottom (right hand in the picture) part of the bottle was moved and/or deleted in steps
to simulate a rising water level. LISA has the facility to measure the volume of selected elements
and this was used to set the model volume to be within 0-5 cc of each of the volume values used in
the experiment to allow a point by point comparison. Some early trials showed that the predicted
frequencies were quite sensitive to the precise dimensions of the air space, which accordingly were
checked again. Taking the velocity of sound to be 34,100 cm/sec the predicted Helmholtz frequencies
are as listed in Table 4, compared with the experimental values. I consider this agreement to be
good, considering the limited tools for measuring the internal dimensions of the bottle and the slight
uncertainty in the air temperature in the neck.

Figure 25: Section through the FE mesh at the Helmholtz resonance of 116 -5 Hz, showing pressure
contours.
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Total air Expt LISA8 Diff % diff
volume (cc) Freq Hz Hz Hz

764 115 116-5 1-5 1-3
720 120 120-3 0-3 0-2
602 130 1325 2:5 19
520 140 143-4 34 24
443 152 156-4 4.4 29
369 168 172-5 45 27
292 194 196-1 21 11
209 226 2354 9-4 4.2
134 291 301-8  10-8 37
105 339 3482 9-2 27
63 454 4730 190 4.2
o1 523 550-8 278 5-3

Table 4: Comparison of Helmholtz frequency predicted by LISA FEA with experimental values for
a wine bottle at 16°C.

It is instructive to relate the pressure contours predicted by finite element modelling to the
air plug and spring model of the classic Helmholtz theory, Figure 17. Figure 26 plots the amplitude
of the acoustic pressure p, along the axis z of the empty wine bottle from the LISA solution; the
units are arbitrary. Recall that the total pressure at position (x,y, z) is Py+p = Py+pa(z,y, 2) coswt.
(0,0, z,t) is zero outside and well away from the bottle, increases linearly with position through the
neck, and attains an almost constant, largest value at the bottom of the bottle. The wavelength far
exceeds the length of the bottle so all particles move in phase. The variation in p, at small distances
x, y off axis is small zero so the values in Figure 25 are essentially for a one-dimensional situation.

Consider a small element of gas on the z axis between z and z +dz and with sectional area A.
The instantaneous pressure difference across its faces is p(z + 0z) — p(z) » Op/dz.6z. This produces
a net force causing acceleration towards the lower pressure region:

dp

9z

¢
0zA = —pAdz Tl
where £ is the displacement of the element. Therefore acoustic pressure and displacement are related
by
dp 0%¢
o: o
Noting that the peak amplitude p, is not a function of time, £ is obtained by integrating the accel-
eration twice with respect to ¢

(22)

: . 0/3 1 Opa .
article velocity = —= = —— ——sinwt.
particle velocity = — 02 inw
10
displacement, & = =P st (23)
pw? Oz

The displacement is therefore in phase with the pressure and proportional to the pressure gradient.
Figure 27 plots the peak particle displacement along the z axis obtained by numerical differentiation
of p, from Figure 26. The plug on air in the neck is very apparent. Though it does not have sharp
edges, most of it lies within 10 cm, consistent with the 9-0 mm obtained experimentally.
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Figure 26: Finite element results for peak acoustic pressure p,(z) along axis z of empty wine bottle.
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Figure 27: The particle displacement (arbitrary units) along axis z of empty wine bottle showing
that almost all movement occurs in the neck.

7 Helmholtz resonances of wooden box structures

This section moves towards understanding the Helmholtz resonances of a violin using experimental
measurements and finite element modelling with LISA 8. First a rectangular plywood box with flat
sides is studied as a series of holes of increasing size and complexity are cut into its top plate. Call
this Box A ; it was the first stage in creating the Box C used in §2. I soon discovered that the
flexibility of the flimsy structure has a very significant effect in decreasing the Helmholtz frequency.
Next the air cavity of a violin in modelled in finite elements and compared with the frequencies
determined in §3.
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Figure 28: Plywood Box A with 9 and 11 mm holes, and cable for internal electret microphone.

7.1 Rectangular plywood box with various apertures

Figure 28 is a photograph of Box A when only two small holes have been cut into it. Most mea-
surements of the Helmholtz frequency were made in the arrangement of Figure 6 with an internal
electret microphone and applied vibration from a loud speaker directed at the aperture and driven
by a sine wave source. However, a few were made with the arrangement of Figure 2, with the electro-
mechanical vibrator and external audio microphone. I started with a single circular hole, labelled
«, and gradually increased its diameter and added a second hole 3. Later these were merged into a
slot as shown in Figure 29. The various stages and their measured Helmholtz frequencies are listed
in Table 5.

In Table 5 the notation in columns 2 and 3 is as follows. First a single hole 9-2 mm diameter
was cut (Case 1), then enlarged to 11 mm (Case 2), then a second hole, 82 mm was cut (Case 3),

B l STAINLESS STEEL 2 3
kD I et el A 1 | | 1 I
Ittt

Figure 29: Detail of Case 19, a slot with circular ends cut into the top of the plywood box.
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Case Hole Tube Slot Expt Expt LISA | Classic
number diams. length width | internal | external | FEA | formula
mm mm mm Hz Hz Hz Hz
Box A 3-ply box
1 9.2, - 63 94 94
2 11, - 71 105 106
3 11, 8-2 89 123 139
4 11, 11-2 97 151
5 11, 11-2 0,4-5 89 137
6 11, 11-2 13,0 86 128
7 11, 14-3 103 124 153 164
8 11, 14-3 0,11-6 91 135 139
9 11, 14-3 0, 19 88 129 132
10 -, 14-3 -, 19 57 81 82
11 -, 14-3 -, 387 46 64 64
12 11, 14-3 0, 38-7 82 118 120 122
13 11, 14-3 13-2, 38-7 67 97 99 93
14 11, 14-3 13-2,0 94 102 143
15 11, - 13-2, - 52 76 75
16 11, 14-3 single slot 4.7 113 129 196
17 11, 14-3 7-3 116 121 175 195
Box B MDF 6 sides
18 11, 14-3 single slot 7-3 166 175 195
19 14-7, 15 14-2 180 191 201
Box C MDF 5 sides
3-ply back
20 14-7, 15 14-2 156 191 201
21 14-7,15 | 12-5 mm clay neck | 14-2 134 156 160
22 25-7,25-7 27-9 180 185 220 240
23 25-7,25-7 25 mm cloth 27-9 153 182

Table 5: Measured and theoretical determination of Helmholtz frequency A0 for a plywood box with
various apertures and their necks.

subsequently enlarged to 11-2 mm (Case 4). Bear in mind that though a Helmholtz resonance can be
detected with these small holes, its amplitude is insignificant compared with other, higher frequency
resonances. For Case 5 a stub of rigid plastic tubing 4 -5 mm long was affixed onto the second hole
to form a neck standing proud of the plywood top. For Case 6 this stub was removed and a 13 mm
long tube fixed at the first hole. A - sign means that either the respective hole had not yet been cut
(Cases 1 and 2) or that it was covered up with a wooden block (Cases 10, 11, 15). At Case 16 the
two holes were connected by a slot 4 -7 mm wide, and this widened to 7-3 mm for Case 17.

A complete set of measurements with the internal microphone is listed under the heading
‘Expt internal’. A few measurements with the Figure 2 arrangement are listed in the next column
under ‘Expt external’. For reasons I cannot readily explain they are all higher than with the internal
microphone determination; perhaps I will return to this one day, but for now let it pass. The
penultimate column is the LISA FEA model values assuming rigid cavity walls. The final column is
the result of the simple formulae Eq 4 and 15 or 18 and 15. Generally they agree well with the FEA
predictions.
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Mesh representing air in cavity and holes Solution : pressure contours at section 1

Section 2 Section 3

Section 4 Section 5

Figure 30: FE modelling of the two holes, one with 19 mm tube attached, joined by a slot. Top left:
the FE mesh component representing the air in the aperture and inside the box. Others: contours
of acoustic pressure at five adjacent sections through the solution space.

Figure 30 illustrates the finite element analysis applied to Case 9 in Table 5. The top left
panel shows a detail of the mesh itself. Bear in mind that the elements represent air. The external
air is suppressed (not visible) in this picture so that we can see the 19 mm column of air in the
tube (bright yellow) and the shorter stub of air in the other hole (orange) which is only through the
thickness of the plywood. The purple area between is where the slot will subsequently be formed,
but at this stage it is not raised above the air inside the box (cream). The other five panels show the
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solution. Colours define contours of acoustic pressure according to the scale shown. The five panels
are adjacent sections through the solution space, and can be compared with Figure 25 for the wine
bottle.

It was abundantly clear that the experimental values were only about 65% of the theoretical
ones. I suspected that this was due to the flexibility of the box’s walls increasing the overall com-
pliance — a softer spring in Figure 17 — so reducing the natural frequency. To test this I glued some
plates of 125 and 19 mm thick MDF board to all six faces of the box, leaving a hole around but
clear of the slotted aperture. Call this Box B. At Case 18 we see that A0 has jumped from 116 Hz
to 167 Hz, satisfactorily close to the FEA prediction of 175 Hz. Five other cases were constructed:

e Case 19: slot widened to 14 -2 mm, shown in the photograph of Figure 29.

e Case 20: the MDF and back plate were removed from the box and a new thin pink 3-ply back
plate glued on to form Box C as first described in §2. The internal microphone found AO at
156 Hz, showing how a modest increase in flexibility will reduce A0, down from 167 Hz.

e Case 21: as Case 20, except that the thickness of the slot was increased by moulding modelling
clay around it to form a neck 12-5 mm thicker (thickness of the MDF'). A0 fell to 134 Hz.

e Case 22: the Plasticine was removed and the aperture increased to 61 by 28 mm as shown in
Figure 1.

e Case 23: I glued a skirt of Dralon fabric around the perimeter of the hole to form a soft neck
nominally 25 mm long.

Plain aperture

100 Hz

0.5 |

Dralon skirt

Figure 31: Effect of adding a neck (or skirt) of Dralon cloth (orange inverted spectrum) all around
the perimeter of the 61 by 28 mm aperture in Box C. Upper green curve is for the aperture with no
Dralon. 100 to 200 Hz.

With Case 23 I was interested to see if this velvety cloth would dampen the resonance and
increase ) so that pitches over a wider interval would be evenly enhanced by the resonance. This
was on the premise that, for good violin tone, one needs reinforcement of the sound whist avoiding
narrow intervals of pitch in which the sound is excessively magnified. The effect of the Dralon can
be seen in Figure 31. Much as with a rigid material, the cloth does form an effective neck capable of
flattening AO. The peak for the plain aperture is reduced to about 40% of its amplitude (16% of its
power) but so is the amplitude at 200 Hz. The FWHH of the unadorned plain aperture is from 175
to 184-5 Hz, centred at 180 Hz. Hence from Eq 14 @ is 33. For the Dralon-dressed aperture FWHH
is from 130 to 167 Hz, centred on 153 Hz, so @) is only 7. A large aperture with cloth neck could be
fashioned to have the same A0 frequency as a conventional violin f-hole, and on this evidence would
enhance the tone over a wider pitch interval. An interesting conjecture.
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7.2 FE model of violin air cavity

To round off this study using finite element models I have constructed a fair approximation to the
air cavity and f-holes of a violin in LISA. Figure 32 is a detail of one f-hole, showing that it is 74
mm end to end and 6 -2 mm wide near its centre. The circular end hole nearer the upper bout is
5-5 mm diameter and the larger towards the lower bout is 9-3. The wood here is 2-4 mm thick. By
plotting an enlarged profile of the hole in LISA I find the area of the hole to be 550 mm?.
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Figure 33: Mesh model of air cavity within a violin, with f-holes.

The air cavity and f-holes were modelled closely as an entirely hex8 mesh in LISA 8, including
making an approximation to the domed plates. Figure 33 shows the finite element mesh of the air
space, with cut-outs where the six internal supporting blocks are placed. The external ‘room’ of air
encompassing the violin is here rendered invisible to reveal the embedded violin. The volume of the
air cavity, excluding the holes, is 0-002073 m?, about 2 litres, as determined from the mesh. The A0
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frequency predicted on the assumption that the walls are rigid is 312 + 2 Hz, to be compared with
the experimental 267 Hz reported in §3.1. Assuming that LISA predicts correctly the frequency for
a rigid cavity, the effect of elastic wood compliance is to reduce AO to about 86% of its rigid-wall
value. This is not inconsistent with the reduction to 65% for the more flexible plywood Box A of
§7.1. Figure 34 is a section through the solution mesh at the position of the f-holes showing contours
of acoustic pressure. Notice that the internal pressure is not constant as the simple theory assumes,
but varies by about 50% between the upper and lower bouts.

Figure 35 is a similar plot at Al in which a half wave-length fits lengthwise into the cavity.
The predicted frequency is 512 Hz, compared with 474 measured — some 93% of the predicted. The
pressures in the two bouts have opposite phase.

Figure 34: Contours of sound pressure at the A0 Helmholtz resonance at 312 Hz as predicted by
LISA. Section through the f-holes.
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Figure 35: Contours of sound pressure at the Al resonance at 511 Hz.

40



8 Effect of wood flexibility on Helmholtz frequency

Table 5 shows clearly the large reduction in the Helmholtz A0 frequency when the cavity walls are
flexible instead of rigid. This means that finite element solutions of Helmholtz’s equation using LISA
will give an upper bound to A0 for a violin or viola, the precise over estimate depending on the
flexibility of the violin. This section considers models which aim to quantify the effect.

8.1 Simple mass and spring model

I start with a simple model of my own devising which essentially treats the flexibility of the cavity
walls as an extra spring in series with the compressible cushion of air. The problem in all such
‘lumped’ approximations — Figure 17 is another case —is knowing how to specify values of equivalent
mass and spring constant. The model is illustrated in Figure 36. The diagram models Box C which
has only one flexible plate, though this is not a restriction of the model. The oscillating air plug
(pale blue) has mass m. The cavity’s volume is V' and the ambient pressure P. The key assumption
is that the plate flexes instantaneously to any change in air pressure — there is no phase lag. This
is equivalent to having the lowest normal mode of the plate at a frequency much higher than AO.
Thus, if Figure 20 applies to the lowest wood resonance, the air Helmholtz resonance is near 0 on the
relative frequency axis where the motion is dominated by the wood’s spring and the inertia of the
plate has negligible effect. The assumption gains some support from experimental results on Box C
such as Figure 8 where the 0-0 breathing mode is at 354 Hz and A0 at 180 Hz.

BV

flexible plate

Figure 36: Model of Helmholtz resonator with flexible bottom plate (red).

Suppose that the pressure inside the cavity increases from P to P+ P. Three things happen:
1. the air in the cavity become compressed,
2. the air plug is pushed out a distance £ and accelerated,
3. the plate flexes outwards into a dished shaped, so increasing the volume of the cavity by dU.

The total change in volume is 6V = A& + 60U where A is the sectional area of the neck. Building on
the analysis in §5.1, P and dV are related through the bulk modulus K:
oV
OP = —K—- Copy of Eq (2)
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The force on the air plug is A.0P and this causes acceleration

mé = AP :—A7K(A§+5U). (24)

We now have to characterise the elasticity of the flexible plate. Since our interest is in volume and
pressure changes, let p = §P/JV be the pressure increase needed to produce unit increase in the air
volume contained by the dished plate. Then

0P

K
§U = = ——(AE+6U).
Iz N

Solving for 6U

. KAg uV )
oU = % (uV+K '

Substituting in Eq 24 gives an equation of simple harmonic motion corresponding to Eq 4a

A2K§( n% )—o
mV \uV+K)

A
w =c —U, o = nv . (25)
LeffV uV + K

Here the relations m = pALcys and ¢? = K/p have been used. Comparing Eq 25 with Eq 4 shows
that the plate’s flexibility reduces A0 by a factor \/o.

£+

with natural frequency

K and pV both have the dimensions of pressure and each describes an elastic stiffness. The
total spring constant ki of two springs k1, ke connected in series is given by

1 1
ko k1 ke
By analogy
1 n4
ﬁ ++ pV+ K

As p — oo, 0 — 1, recovering Eq 4 for a rigid box.

K is known from published data to be 1-42x10° Pa at ambient temperature, but we are still
left with determining u. I have used static load modelling in LISA to obtain u for the two boundary
conditions

o fully fixed edges in which displacement in the z (out-of-plane) direction is 0 and also rotation
about the local edge as axis is 0,

e semi-flexible edges in which displacement in the z direction is 0, but rotation about the edge
is not constrained. This is close to being simply supported.

The former approximates the single back plate of Box C, whilst the second approximates the six
plywood sides of Box A (Figure 28). In outline the LISA calculation was as follows. The orthotropic
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plate was in the x —y plane. The elastic constants for this pink 3-plywood had been determined in
the previous article!*, namely

E1=9-44, E2=4-06, G12=1-04, G23=0-51, G31=O-25GPa, 1/1220.

I applied the same force in the z direction at every node except on the edge and solved for the z
displacements. The sum of these multiplied by the area of plate corresponding to a single node
equals the volume within the dish shape which the plate assumes. Therefore p is {applied load /
(plate area x volume in dish)}. For the fully fixed edges j = 2-5 x 10% SI units, whilst for the simply
supported edges it decreases to 4-25 x 107,

These values of p can now be used in Eq 25 to find the percentage reduction in A0 caused
by wall compliance. For Box C there is one plate with area 0-0544 m? so uV =~ 6-1 x 10° Pa and
o =0-81. Therefore A0 is 90% of the rigid wall frequency. The only directly comparable experimental
measurements are for Cases 19 and 20 in Table 5, from which 156 Hz / 180 Hz = 87%, in remarkable
agreement. For Box A it would in principle have been possible to model a uniform outwards force at
every node in the finite element model, though extracting the volume change from this would require
some careful effort. However, let us just say that only the two 34 by 16 cm plates are significant,
and these are adequately approximated by the simply supported condition. It may be that the plate
with the aperture does not flex quite as much as the other, but let’s say that with two plates the
volume change 60U is almost doubled. Then p is halved and o ~ 0-27, making A0 drop to up to 52%.
Again there is only one pair of directly comparable measurements in Table 5, for Cases 17 and 18:
116/166 = 70%. The theory here seems to over estimate the frequency decrease, but qualitatively
explains what is seen in practice.

8.2 Coupled oscillations of two masses and springs

I did briefly consider including the inertia of the flexible plate through the two mass-and-spring
model in Figure 37. The air plug is shown as a cube of air, mass m, moving through a hole in the
top plate and connected to the back plate by a soft air spring of stiffness s. The effective mass of the
wooden plate is M and its spring constant is S. The general solution to this is given in textbooks
on vibrations. The main difficulty is assigning values to the quantities m, s, M and S.

Take the air plug first. I will base the estimates on Box C at its widest aperture, d = 61 mm,
w =28 mm. For rigid walls we know from Eqs 3 and 4 that
9 KA s

= and m =pLA
p m

where L means the effective length of the air plug, Eq 15, and K is the bulk modulus, 1 -422 x 10°
Pa at 17°C. The sectional area A is 1448 mm? and from Eq 15 L~ 2-9 + 2/3\/Z61 x 28) ~ 30mm.
p=1-22kg/m® so m is about 54 mg. The formulae above give

KA?
s = ~ 122 Pa/m.
%

These values of m and s would predict the Helmholtz frequency to be 240 Hz. LISA predicts that
A0 should be at 220 Hz (Case 22 in Table 5), and this implies that s is 103 Pa/m.

The Vibration of Plywood Plates by Experiment and Finite Element Analysis: Edge Constraints and Box Struc-
tures’.
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spring

Figure 37: A system with 2 degrees of freedom modelling interaction between air and the box walls.

M and S are more problematical because the plate is precisely that — a plate covering an
area and held at the edges, not a rigid body whose displacement can be specified by a single value.
Moreover, M and S are intended to represent the plate at the frequencies of A0 and the wood 0-0
and possibly higher modes. However, it cannot be assumed that one value of M and one of S can
apply over a wide frequency range. Here are three ways of looking at them:

Case 1 : In §8.1 M =0 and S is represented by pV, an equivalent bulk modulus whose value is
calculated at zero frequency.

Case 2 : The actual mass of the flexible plate of Box C is 94 g and the 0-0 mode is at 354 Hz, so
w? = §/M would imply that S =4-65x 10° N/m.

Case 3 : Figure 8, §2.2 shows the effect on the 0-0 frequency of adding masses in 6 g steps. This
can be modelled in LISA. Suppose that M, is added with Plasticine or otherwise. The formula
w?=8/(M + M,) can be rewritten as a straight line

Ma = —2 - M
w
Therefore plotting the added mass against 1/(27f)? should give a straight line graph with gradient
S and intercept M.

Figure 38 shows such graphs for the experimental values in Figure 8 and for finite element predictions
using the elastic constants in §8.1 above, and applying the extra mass in a small patch near the centre
of the back plate. The LISA model calculates the plate’s normal modes assuming it to be in vacuum,
while the experiments of course had air inside and around the box. The finite element prediction is
that M is 12-5 grams and the spring constant S = 5-5 x 10* Pa/m, whilst the experimental values
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Figure 38: Effect on breathing-mode frequency of adding mass to the back plate of Box C .

give M ~30 g, S~ 14-4 x 10* Pa/m. It is remarkable how smaller M is than the actual 90 g mass
of the plate.

However, things are not straightforwards. I carried out more LISA calculations to examine
the effect of spreading the added mass over a larger area. Not surprisingly, adding all the mass
towards the centre, where the displacement, velocity and acceleration are greatest, has a much larger
effect than adding it around the edge. With all mass added only to the central node the graph
extrapolates to M = 12 g with gradient S = 5.0 x 10* N/m. At the other extreme, spreading the
added mass uniformly over the plate gives M = 91 g, the actual weight of the plate, and S = 3-89x 10°
N/m. These correspond to LISA’s predicted frequency for 0-0 of 328 Hz.

To see how these options affect the model’s predictions it is necessary to solve the equations
of motion for Figure 37. Suppose that a periodic force F coswt is applied to the wooden plate. Use
X and z for displacements of plate and air plug respectively. Include a damping force of RX on the
wood’s spring, and one of & on the air’s spring. Then the equations of motion are

Feoswt-SX +s(z-X)-RX +r(i-X) = MX, (26a)
~s(x-X) —r(&-X) = mi. (26b)

In the usual way look for periodic solutions in which all parts move at the same frequency. Substi-
tuting X = Aexpiwt, © = aexpiwt leads to two simultaneous linear equations which in matrix form

e (S+S—Mw2+iw(R+r) -8 —iwr )(A) :(F)

—-S —lwr s—mw?+iwr)\a 0

Our interest is in the steady state behaviour so ignore the transient solution for F' = 0. Also, the
damping terms make the solution look very complicated. We know from §5.2 that R and r broaden
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and decrease their respective resonances without shifting the peak frequency much, so for the time
being set R = r = 0. The amplitudes A and a are complex quantities representing both amplitude
and phase relative to F'coswt. Their magnitudes are

_ F(mw? - s)) _Fs

A , a=—, H=Mmw"-(Ms+ms+mS)w’+Ss. (27)
H H

The denominator is a quadratic in w? and clearly the resonant frequencies occur where it is zero.
Write the above in terms of the resonant frequencies of the uncoupled wood and air mass-spring

systems, w2 = S/M, w2 = s/m

A w?-w?2 a w?
F H F H
H - M[(w2 Cw2) (W —w?) - %wQ] . (28)
In this form it is easy to see that if s/M is negligible,
2
A N ;, a Wa (29)
F Mw?-w2) F Mw?-w2)(w?-w?)

which tend to infinity at the natural frequencies of the separated wood and air systems. s/M therefore
determines the interaction between the air and wood resonances.

For a numerical illustration let us take at face value the frequencies of A0 at 220 Hz and
wood 0-0 at 328 Hz predicted by LISA for Box C with the 61 by 28 mm aperture (recall §2 and
Table 5, Case 22). Normalise with respect to the Helmholtz frequency for rigid walls, w,, by letting
wg = 1. The ratio wy/w, is 1-49. Figure 39 shows how the two resonances diverge as the coupling
s/M increases. The experimental values of A0 and 0-0 are 180 Hz and 354 Hz. Unfortunately these
do not correspond to a single value of y = s/M. For A0 to fall to 0-82, s/M must be 0-77 = 168
Hz, but for 0-0 to rise to 1-61 requires s/M be to only 0-23 = 50 Hz. At the beginning of this

2
1.8
wooden plate 0-0 resonance
1.6 7
relative
frequency
14 1 sqri(xsqrt(60855601 y*2+391922240 y+90592324)+7801 y+25120)/sqrt(15602) ]
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Figure 39: Increase in plate 0-0 modal frequency and decrease in A0 as wood-air coupling s/M
increases, normalised to A0=1.
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sub-section §8.2 s was estimated by LISA to be 103 Pa/m. 50 Hz would then require M to be only
1 gram, which seems nonsense — it cannot even be reconciled with the 12 g limiting value when all
mass added to the plate is placed in the very centre.

I cannot explain why this two mass-and-spring model is so poor. It seems to be saying that
the plate’s mass M is essentially zero, and hence that a two-mass-two-spring model is not appropriate.
Probably the most we can claim is that it shows that the air and wood resonances push each other
apart in frequency. The one-mass-two-springs model of §8.1 is a more reasonable quantitative model.

8.3 Other theories of the elastic Helmholtz resonator

Several researchers have been inspired by the pioneering work of Saunders and Hutchins (§4) to
explore the A0 and Al air resonances and the main wood resonance of violins by experiment and
theory. Much use has been made of equivalent electrical networks to model the acoustics, starting
probably with John Schelleng (J Acoustic Soc America (JASA) Vol 35 No 3 1963 326-338). Nearly
30 years later E. Shaw (JASA Vol 87 1990 398-410) developed an alternative ‘2 degrees of freedom’
model which he applied to model Hutchins’ ‘Swiss-cheese’ violin with 65 holes in its ribs. This treated
the violin as made of its two bouts, treated as upper and lower spring-like capacitances, connected
by a channel under the bridge which acts as a mass. In this way it can deal with non-uniform
pressure distribution within the cavity, which LISA also predicts (see Figure 34 for A0, 35 for Al).
It predicts that in the A0 modes the pressure in the upper volume is 30% higher than in the lower.
This is consistent with the LISA solution in Figure 34. This ventilated violin was studied again
by Weinreich, Holmes and Mellody (JASA Vol 108 2000 2389-2402). They interpret the modes of
vibration of a violin in terms of a revised set of ‘dynamic’ basis modes which are characteristic of the
instrument and recognise that, for instance, A0 is influenced by wall flexibility. Their experimental
measurements, however, are only on the Swiss cheese violin.

George Bissinger (JASA Vol 100 No 3 1996 1835-1840) carried out numerical calculations
of standing waves in a closed, rigid, violin-shaped cavity. The method involved internal scattering
of standing wave resonances introduced by point source excitation of the cavity, using the BEMAP
boundary element program rather than finite elements. He used it to examine the effects of plate
arching and rib height on A0 and Al. Later he made a violin-shaped box out of aluminium (JASA
Vol 104 No 6 1998 3608-3615) to study coupling between A0 and A1l and relate experimental mea-
surements with an extension of Shaw’s equivalent electrical network. Later still Bissinger made
acoustic pressure measurements on a series of violin family instruments to quantify further the effect
of wall compliance on the cavity air modes (JASA Vol 113 No 3 2003 1718-1723). He finds that A0’s
dependence on cavity volume is essentially as V=13 and not the V ~1/2 predicted by simple theory
for rigid walls as in §5.1. Indeed, he says that coupling of A1 and A0 would make the dependence
as V=14 for rigid walls.

There is a wealth of detail in these papers, with many effects and subsidiary effects being
described, variously modelled and related to one another. Broadly their collective thrust is that A0
is important for loudness and tone in the lower register, that it is linked through the geometry of
the cavity to Al, and is reduced by compliance of the cavity walls.
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Coming from a very different starting point, the theory of a resonator with flexible elastic
walls has been analysed using sophisticated mathematics by Andy Norris and Gerry Wickham!® 16,
This is a mathematically exact treatment, unlike the rather heuristic treatments noted above. They
first formulate the problem for a hollow thin-walled shell of arbitrary geometry, then particularise
to a spherical elastic shell with a circular hole cut into it, immersed in a fluid and with a plane
compression wave incident. Damping is only by radiation. The similar situation with a rigid hollow
sphere is solved as a ‘problem’ example by Morse and Ingard on pages 692-694 of their classic tome
‘Theoretical Acoustics’ (McGraw-Hill, 1968). Norris and Wickham formulate the scattering problem
exactly as an integral equation across the aperture using mathematical devices previously developed
by Wickham. As expected from the geometry, the exact solution is given as sums of spherical
harmonic functions. They find that the effective impedance of the fluid filled cavity is the result of
the enclosed fluid and shell acting in series; this is also what I found in my simple model of §8.1.
They also prove that A0 must always be much lower than the lowest structural frequency of the
resonator, so AQ and 0-0 will always be distinct. Numerical examples of exact solutions are given
for steel shells in water, but, as in several of their other papers, the authors are mainly interested
in uniformly valid asymptotic expansions for approximating the field at long wavelengths and small
apertures.

I will give a summary of Norris and Wickham’s asymptotic results because they are exact
within their assumptions. I must say, however, that, regrettably, entering numerical values for Box
C does not predict a noticeable lowering of A0 and so does not fit my experimental measurements.
I cannot explain why this should be.

Using their notation, the spherical shell has radius a¢ and wall thickness h << a. The cavity’s
volume V is therefore 47a®/3. The aperture is circular and defined by the semi-angle o which it
subtends at the centre of the sphere. The spherical area of the opening is then found by integrating
the element of surface area a?sin ¢ d¢ df to be S = 27a?(1-cosa). A plane wave of radian frequency
w is incident normal to the plane of the aperture. They find the Helmholtz frequency and @ factor
to be

Ry S 47
2 2 110
= —_— = . 30
w0 T C Ty @ RokdV (30)
Compare these with Eq 4 of §5.1 and Eq 20 of §5.4. ¢ is the effective length of the air plug given by
- 1
é = (E —a) sina + sin? S + §RORO sin2 & - — Ry sin? 3_04. (31)
a 2 2 5 2 2 2
For a rigid shell Ry and R; are both 1. For a flexible shell they are
2
1 e 38 (32)
Ry h 2(1+v)psc?
L -1+ 2P
R, h 2ps
- 4 c?
Ry =R, 1-Ry) ————— .
0 o+ ( 0)5(1+1/)cs2

5 Gerry Wickham was a personal friend of mine. Gerry and I collaborated over about 12 years on a number of
projects to do with elastic wave scattering applied to ultrasonic non-destructive testing of metals in industry, and in
the course of this my company supported about 10 research students of Gerry’s. He was an able and enthusiastic
mathematician who was appointed professor at Brunel University after 26 years in the Maths Department, University
of Manchester. He died suddenly of a brain haemorrhage on Christmas Eve, 1995, aged only 52.
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Here subscript s refers to the shell. p is the density, ¢ the velocity of sound and v Poisson’s ratio. c;
is related to Young’s modulus E and density through ¢2 = E/[ps(1 - 1?)]. So Norris and Wickham
express the compliance of the shell in terms of its velocity of sound and density.

Air has these values in SI units : p=1-26, ¢=341-5.

For the plywood v ~ 0 and E =9-4 x 10? so with p, = 596, ¢, = 3970.

h =0.00291 m so we are left only with finding equivalent values for a and «, seeing that Box C is a
cuboid, not a sphere, and has an oval opening, not a circle. I'll choose a to give the same volume
as Box C, which is V = 0-002448 m3; then a = 0- 0836 m. The actual area of the aperture is 1448
mm?, equivalent to a circle of radius 0-0215 m. This radius, taken with the above equivalent radius
of the sphere, would mean « = 0-26 radians ~ 15°. This says the aperture subtends about 30° at the
centre of the sphere, which strikes me as rather large. Nevertheless, let’s work with these equivalent
values.

Substituting in Eq 32 gives Ry = Ry = 0-9993 and R; = 0-97005, virtually the rigid wall
values. Then §, from Eq 31, is also no different from its rigid wall values and the formulae, despite
their rigour, predict no change for Box C. C’est la vie!

9 Conclusion

This article has examined the resonances of the air cavity of a violin and studied the lowest frequency
oscillation, A0, in some depth. This explains part of the role of the f-holes, though not their effect
on vibration of the top plate. The following main points seem clear:

1. The A0 air resonance at about 270 Hz (C sharp) in a violin is indeed a Helmholtz resonance
in which the air in the cavity behaves as a spring causing a plug of air near each f-hole to
oscillate.

2. The frequency is governed by the geometry of the instrument and the size of the holes. To
first order several holes act as one having the aggregate area and produce only one resonance.
Formulae Eq 4 and Eq 18 give quite accurate predictions for resonators with rigid walls.

3. A0 of a violin can be adjusted by widening or partially covering the f-holes. Widening sharpens
the note and covering flattens it. If one f-hole is completely covered, AO drops by about a
musical fourth.

4. The sound amplitude of A0 is roughly proportional to the total area of the holes, so covering
them diminishes their contribution to tone.

5. T have suggested that a stronger A0 resonance yet with a large @, so covering a wider frequency
range, might be achieved by significantly increasing the opening of an f-hole and lining it was
a cloth sleeve to form a non-rigid neck. Perhaps I will sacrifice a violin to this theory.

6. A0 can be measured in two ways using simple equipment: a) by an internal electret microphone
with external excitation through the air from a nearby loudspeaker, and b) by an external
microphone when the violin bridge is driven by an electromagnetic vibrator.

7. Some plate modes can be distinguished from air cavity modes by adding small masses to the
plates and observing the decrease in resonant frequency.

8. A0 is quite a narrow resonance — about a semitone either side of Cf. @ is governed mainly by
viscous losses at the holes rather than by sound radiation. There are minor peaks on the lower
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shoulder of this resonance. I have no explanation for either the origin or musical importance
of these.

9. Though the Helmholtz resonance is widely regarded as crucial to supporting the loudness and
tone in the lower register of violin family instruments, my own subjective listening tests on a
violin played normally with the f-holes variously obstructed led to no clear impressions. With
one hole covered the tone on the lowest string seemed rather nasal, and thin with both covered.

10. Finite element modelling with the LISA program gives solutions of Helmholtz’s equation which
are in good agreement with experiment on nominally rigid structures, though A0 is about 4%
high.

11. Crucially, the A0 frequency is strongly influenced by the flexibility of the wooden box. Math-
ematical treatments which assume rigid walls give an upper bound. In the rectangular box
made from with 3 mm thick 3-ply, A0 was only about 70% of the rigid wall value. The simple
one-mass-two-springs model, supported by finite element values of plate deformation, described
in §8.1 has given quite good agreement with experiment.

Despite these studies I remain unsure of the importance of the f-holes and the air resonances
in determining the tone of a violin or viola during normal play. How can such a narrow (+one
semitone) resonance about an infrequently played note, Cjj, benefit the tone over the whole lower
register of the instrument? Though stimulated as a transient by each note played, it does not persist
long enough to make a perceivable difference. I intend a future paper to look further into violin tone.

John Coffey, Cheshire, England, April 2013.
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